PSO-based method for SVM classification on skewed data sets
نویسندگان
چکیده
منابع مشابه
A new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملEnhancing the Performance of SVM on Skewed Data Sets by Exciting Support Vectors
In pattern recognition and data mining a data set is named skewed or imbalanced if it contains a large number of objects of certain type and a very small number of objects of the opposite type. The imbalance in data sets represents a challenging problem for most classification methods, this is because the generalization power achieved for classic classifiers is not good for skewed data sets. Ma...
متن کاملNetwork Intrusion Detection Based on PSO-SVM
In order to improve network intrusion detection precision, this paper proposed a network intrusion detection model based on simultaneous selecting features and parameters of support vector machine (SVM) by particle swarm optimization (PSO) algorithm. Firstly, the features and parameters of SVM are coded to particle, and then the PSO is used to find the optimal features and SVM parameters by col...
متن کاملRobust classification for skewed data
In this paper we propose a robust classification rule for skewed distributions. For low dimensional data, the classification is based on the adjusted outlyingness. In the case of high dimensional data, the robustified SIMCA method is adjusted for skewness. The robustness of the method is investigated through different simulations and by applying it to various real examples.
متن کاملA Hybrid Classifier Based on Svm Method for Cancer Classification
In this paper, we proposed a new method of applying Support Vector Machines (SVMs) for cancer classification. We proposed a hybrid classifier that considers the degree of a membership function of each class with the help of Fuzzy Naive Bayes (FNB) and then organizes one-versus-rest (OVR) SVMs as the architecture classifying into the corresponding class. In this method, we used a novel system of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2017
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2016.10.041